CHECKLIST

Dinámica sucesional de un fragmento de bosque seco tropical del Valle del Cauca, Colombia

Última versión Publicado por Instituto de Investigación de Recursos Biológicos Alexander von Humboldt en 9 de febrero de 2017 Instituto de Investigación de Recursos Biológicos Alexander von Humboldt
I2D-BIO_2015_IPT029 Los ecosistemas del Valle del Cauca han sido transformados a un paisaje con pocos y pequeños fragmentos de bosque. Este estudio midió tasas de mortalidad y reclutamiento, cambios en estructura, composición y almacenamiento de biomasa de la vegetación en una parcela permanente de 1 ha en el Parque Natural Regional El Vínculo, Valle del Cauca, en el 2009 y 2011. Se registraron 1768 tallos con DAP ≥ 5 cm que aumentaron a 1811 tallos en el 2011, representados por 52 especies de 25 familias. Fabaceae y Rutaceae fueron las familias más dominantes. Las especies con mayores IVI, área basal y aporte de biomasa fueron Eugenia procera, Amyris pinnata, Pithecellobium lanceolatum, Guapira sp. y Guazuma ulmifolia. La tasa de mortalidad anual (Tm= 4,84%) se debió a la muerte de tallo... Más

Descripción

I2D-BIO_2015_IPT029 Los ecosistemas del Valle del Cauca han sido transformados a un paisaje con pocos y pequeños fragmentos de bosque. Este estudio midió tasas de mortalidad y reclutamiento, cambios en estructura, composición y almacenamiento de biomasa de la vegetación en una parcela permanente de 1 ha en el Parque Natural Regional El Vínculo, Valle del Cauca, en el 2009 y 2011. Se registraron 1768 tallos con DAP ≥ 5 cm que aumentaron a 1811 tallos en el 2011, representados por 52 especies de 25 familias. Fabaceae y Rutaceae fueron las familias más dominantes. Las especies con mayores IVI, área basal y aporte de biomasa fueron Eugenia procera, Amyris pinnata, Pithecellobium lanceolatum, Guapira sp. y Guazuma ulmifolia. La tasa de mortalidad anual (Tm= 4,84%) se debió a la muerte de tallos de especies heliófilas. La tasa de reclutamiento anual (Tr= 6,94%) reflejó el éxito en la dispersión y establecimiento de especies dispersadas por animales. La tendencia de la vegetación fue a aumentar el área basal y la biomasa. Se concluye que el bosque se encuentra en un estado sucesional temprano, no muestra perturbación y es un reservorio representativo de la diversidad del bosque seco tropical. A partir de la información obtenida se realizó un artículo científico, el cual fue publicado en la Revista Biota Colombiana, volumen 13, número 2, páginas 66-85.

Registros

Los datos en este recurso de lista de chequeo han sido publicados como Archivo Darwin Core(DwC-A), el cual es un formato estándar para compartir datos de biodiversidad como un conjunto de una o más tablas de datos. La tabla de datos del core contiene 52 registros.

también existen 2 tablas de datos de extensiones. Un registro en una extensión provee información adicional sobre un registro en el core. El número de registros en cada tabla de datos de la extensión se ilustra a continuación.

  • Taxon (core)
    52
  • MeasurementOrFacts 
    988
  • TypesAndSpecimen 
    52

Este IPT archiva los datos y, por lo tanto, sirve como repositorio de datos. Los datos y los metadatos del recurso están disponibles para su descarga en la sección descargas. La tabla versiones enumera otras versiones del recurso que se han puesto a disposición del público y permite seguir los cambios realizados en el recurso a lo largo del tiempo.

Descargas

Descargue la última versión de los datos como un Archivo Darwin Core (DwC-A) o los metadatos como EML o RTF:

Datos como un archivo DwC-A descargar 52 registros en Español (25 kB) - Frecuencia de actualización: desconocido
Metadatos como un archivo EML descargar en Español (48 kB)
Metadatos como un archivo RTF descargar en Español (44 kB)

Versiones

La siguiente tabla muestra sólo las versiones publicadas del recurso que son de acceso público.

¿Cómo referenciar?

Los usuarios deben citar este trabajo de la siguiente manera:

Torres-G, A.M., Adarve, J.B., Cárdenas, M., Vargas, J.A., Londoño, V., Rivera, K., Home, J., Duque, O.L., González, A.M. (2013). Dinámica sucesional de un fragmento de bosque seco tropical del Valle del Cauca, Colombia. 52 registros. Versión 2.1. http://doi.org/10.15472/gvdjfj

Derechos

Los usuarios deben respetar los siguientes derechos de uso:

El publicador y propietario de los derechos de este trabajo es Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. This work is licensed under a Creative Commons Attribution Non Commercial (CC-BY-NC) 4.0 License.

Registro GBIF

Este recurso ha sido registrado en GBIF con el siguiente UUID: 49462b79-dac9-455f-9d7a-d5d6d9d4fd51.  Instituto de Investigación de Recursos Biológicos Alexander von Humboldt publica este recurso, y está registrado en GBIF como un publicador de datos avalado por Colombian Biodiversity Information System.

Palabras clave

parcelas permanentes; composición y estructura florística; biomasa; sucesión vegetal; Parque Natural Regional El Vínculo; Tracheophyta; Plantae; Checklist; Inventoryregional

Datos externos

Los datos del recurso también están disponibles en otros formatos

Dinámica sucesional de un fragmento de bosque seco tropical del Valle del Cauca, Colombia http://i2d.humboldt.org.co/ceiba/resource.do?r=biota_v13_n2_03 UTF-8 txt

Contactos

¿Quién creó el recurso?:

Alba Marina Torres G
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO

¿Quién puede resolver dudas acerca del recurso?:

Revista Biota Colombiana
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt
Calle 28A No. 15-09
Bogota, D.C.
Bogotá, D.C.
CO
3202767
http://www.humboldt.org.co

¿Quién documentó los metadatos?:

Infraestructura Institucional de Datos
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt
Calle 28A # 15-09
Bogotá, D.C.
Bogotá, D.C.
CO
3202767
http://www.humboldt.org.co

¿Quién más está asociado con el recurso?:

Custodio de los Datos
Infraestructura Institucional de Datos
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt
Calle 28A # 15-09
Bogotá, D.C.
Bogotá, D.C.
CO
3202767
http://www.humboldt.org.co
Autor
Alba Marina Torres G
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO
Autor
Juan Bautista Adarve
INCIVA
Cali
Valle del Cauca
CO
Autor
Mariana Cárdenas
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO
Autor
Jhon Alexander Vargas
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO
Autor
Viviana Londoño
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO
Autor
Katherine Rivera
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO
Autor
Johan Home
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO
Autor
Olga Lucía Duque
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO
Autor
Ángela María González
Grupo de Investigación Ecología y Diversidad Vegetal
Universidad del Valle
Cali
Valle del Cauca
CO

Cobertura geográfica

El PNR El Vínculo (3°50’23’’N; 76°18’07’’O) se ubica en el piedemonte de la cordillera Central en el corregimiento El Vínculo, 3 km al sur del municipio de Buga, Valle del Cauca.

Coordenadas límite Latitud Mínima Longitud Mínima [3,66, -76,65], Latitud Máxima Longitud Máxima [4,38, -75,96]

Cobertura taxonómica

Se registraron un total de 52 especies pertenecientes a las siguientes familias: Fabaceae (9 especies), Achatocarpaceae (1 especie), Rutaceae (5 especies), Anacardiaceae (1 especie), Annonaceae (1 especie), Moraceae (3 especies), Malpighiaceae (3 especies), Capparaceae (1 especie), Salicaceae (2 especies), Malvaceae (2 especies), Rubiaceae (2 especies), Verbenaceae (1 especie), Euphorbiaceae (2 especies), Sapindaceae (3 especies), Thymelaeaceae (1 especies), Myrtaceae (3 especies), Poaceae (1 especie), Nyctaginaceae (3 especies), Lauraceae (2 especies), Arecaceae (1 especie), Meliaceae (1 especie), Phytolaccaceae (1 especie), Urticaceae (1 especie), Asteraceae (1 especie), Rhamnaceae (1 especie).

Familia  Fabaceae,  Achatocarpaceae,  Rutaceae,  Anacardiaceae,  Annonaceae,  Moraceae,  Malpighiaceae,  Capparaceae,  Salicaceae,  Malvaceae,  Rubiaceae,  Verbenaceae,  Euphorbiaceae,  Sapindaceae,  Thymelaeaceae,  Myrtaceae,  Poaceae,  Nyctaginaceae,  Lauraceae,  Arecaceae,  Meliaceae,  Phytolaccaceae,  Urticaceae,  Asteraceae,  Rhamnaceae

Cobertura temporal

Fecha Inicial / Fecha Final 2009-01-01 / 2011-01-01

Métodos de muestreo

Se midieron las tasas de mortalidad y reclutamiento, cambios en estructura, composición y almacenamiento de biomasa de la vegetación en una parcela permanente de 1 ha en el Parque Natural Regional El Vínculo, Valle del Cauca, en el 2009 y 2011. Se

Área de Estudio El PNR El Vínculo (3°50’23’’N; 76°18’07’’O) se ubica en el piedemonte de la cordillera Central en el corregimiento El Vínculo, 3 km al sur del municipio de Buga, Valle del Cauca. Su altitud varía entre los 977 y los 1150 m s.n.m., presenta una temperatura promedio de 24 ºC y 1379 mm de precipitación promedio anual. El clima presenta un comportamiento bimodal con dos periodos secos (enero-abril y julio-agosto) y dos periodos de lluvia (marzo-junio y septiembrediciembre) (Parra 1994). Estas características lo ubican en la zona de vida bosque seco tropical (bs-T) en la escala de Holdridge (1967). La zona que actualmente alberga al PNR El Vínculo ha estado bajo la protección del Estado desde 1969, año en el cual cesó la explotación agropecuaria a la cual había sido expuesta. De las 74 ha que lo componen, 30 ha representan el fragmento de bosque intangible del PNR El Vínculo (Rojas 1991). Se considera que este fragmento de bosque seco es el más grande del valle geográfico del río Cauca (Silverstone-Sopkin, com. pers.).

Descripción de la metodología paso a paso:

  1. ESTABLECIMIENTO DE LA PARCELA PERMANENTE: Se estableció una parcela rectangular de 20×500 m (1 ha), dividida en 25 cuadrantes de 20×20 m, dispuestos en una línea hasta alcanzar los 500 m. Cada cuadrante fue dividido en cuatro subcuadrantes de 10×10 m numerados en contra de las manecillas del reloj (empezando en la esquina inferior izquierda del cuadrante) para efectuar y facilitar el marcaje y numeración de los tallos. Los vértices de la parcela, los cuadrantes y subcuadrantes fueron delimitados con tubos de PVC. Se marcaron todos los tallos de los individuos leñosos con DAP ≥ 5 cm (diámetro a la altura del pecho, ca. 1,3 m del suelo), usando placas de aluminio con número consecutivo. Para el caso de las lianas, se midió dicho parámetro de forma longitudinal sobre el tallo a 1,3 m de su base. Para efectos del monitoreo, se marcó una línea con pintura de aceite amarilla a la altura óptima de medición del CAP (circunferencia a la altura del pecho), para garantizar que las mediciones consecutivas se realizaran en el mismo lugar.
  2. MONITOREO DE LA PARCELA PERMANENTE: Posterior al establecimiento de la parcela permanente, se realizó el primer censo en abril de 2009. Se registró el CAP, altura total y altura de fuste. Además, se colectó material vegetal para la identificación taxonómica de los individuos incluidos en el censo. Esta determinación se realizó con ayuda del material de referencia de los herbarios CUVC de la Universidad del Valle, JAUM del Jardín Botánico de Medellín y TULV del Jardín Botánico de Tuluá. En mayo de 2011 se realizó el segundo censo de la parcela permanente, midiendo los mismos parámetros del primer censo. Se registraron tallos muertos y reclutados (DAP ≥ 5 cm). Estos últimos fueron igualmente marcados, numerados, medidos y determinados taxonómicamente.
  3. ANÁLISIS DE DATOS: Composición de la Estructura Florística: Para ambos censos se establecieron los patrones de composición y estructura de la parcela utilizando los valores de riqueza, abundancia, frecuencia, densidad, área basal e índice de valor de importancia (IVI) de las especies. De igual manera, se analizó la distribución de clases diamétricas de los tallos en la parcela para los dos años de medición, utilizando las fórmulas descritas por Rangel-Ch. y Velázquez (1997) (fórmulas 1 y 2): (1) C = (Xmáx – Xmin) × m-1 (2) m = 1 + 3,3 × (Log n) donde: m = número de intervalos, n = número total de tallos, C = amplitud del intervalo y X = parámetro a analizar, en este caso el DAP.
  4. ANÁLISIS DE DATOS: Dinámica de la Parcela: La dinámica de la vegetación entre los dos censos se estableció calculando las tasas anuales de mortalidad y de reclutamiento, utilizando las fórmulas 3 y 4, respectivamente (Swaine y Lieberman 1987, Phillips et al. 1994, Condit et al. 1995, Nebel et al. 2001). (3) Tm = [ln(Ni) – ln(Nm)]/Δt (4) Tr = [ln(Ni – Nm + Nr) – ln (Ni – Nm)]/ Δt donde: Tm = tasa de mortalidad, Tr = tasa de reclutamiento, Ni = número de tallos en el primer censo (t0), Nm = número de tallos muertos en el segundo censo (t1) y Nr = número de tallos reclutados en t1.
  5. ANÁLISIS DE DATOS: Estimación de Biomasa Aérea y Subterránea: La biomasa aérea se estimó en forma indirecta mediante fórmulas de regresión lineal, utilizando parámetros de cada censo (i.e. DAP y altura total) y la densidad de la madera de las especies registradas. En este análisis se excluyó Guadua angustifolia. Se consultó la base de datos global de densidades de madera de Chave et al. (2009) y Zanne et al. (2009) para las especies, géneros y familias registrados en la parcela, de acuerdo a la disponibilidad de los mismos. Debido a que no se ha reportado la densidad de la madera de Achatocarpus nigricans, ni del género o la familia, ésta se estableció de manera directa. Se tomaron 44 muestras de madera de 5 individuos ubicados en la parcela. Las muestras se pulieron, formando cilindros de volumen conocido, se secaron y pesaron para determinar la densidad específica de la madera (Anexo 3). La estimación indirecta de la biomasa aérea de árboles y arbustos se efectuó con la fórmula 5, propuesta para bosques secos, y la fórmula 6, propuesta para lianas (Chave et al. 2005). (5) B(aérea) = 0,112 × (ρ × D2 × H)0,916 (6) B(aérea) = ρ × exp[-0,667+1,784 ln(D) + 0,207 (ln(D))2 – 0,0281 (ln(D))3] donde: B(aérea) = biomasa aérea (kg), ρ = densidad de la madera (g.(cm3)-1), D = DAP (cm) y H= altura total del árbol (m). La estimación de la biomasa subterránea se hizo en forma indirecta. Se calculó la biomasa de raíces gruesas (> 5 mm de grosor) y de raíces finas (≤ 5 mm de grosor) con los modelos propuestos por Sierra et al. (2001), fórmulas 7 y 8, respectivamente. (7) ln (BRg) = -4,273 + 2,633 × ln (D) (8) BRf = 6,9981 + 0,2879 × G donde: BRg = biomasa de raíces gruesas (kg), BRf = biomasa de raíces finas (kg.ha-1), D = DAP (cm) y G = área basal total de la parcela (m2). Para establecer el aporte de biomasa de cada especie y de cada familia, se sumaron los valores de biomasa aérea y subterránea de raíces gruesas. La biomasa total acumulada en la parcela es el resultado de la suma de las biomasas aérea y subterránea (i.e. raíces gruesas y finas). Para estimar el carbono se multiplicó la biomasa total por un factor de 0,5; teniendo en cuenta que la biomasa vegetal tiene un 50 % de carbono, una vez se ha removido el agua (Vallejo et al. 2005). Adicionalmente, los datos se dividieron en dos intervalos de DAP 5-10 cm y ≥ 10 cm), para permitir comparaciones con otros estudios. Los datos de cada intervalo fueron utilizados para calcular la biomasa, las tasas totales de mortalidad y reclutamiento anual, área basal y composición general de especies.
  6. ESTRUCTURACIÓN DE LOS CONJUNTOS DE DATOS Una vez el artículo fue publicado por la revista, la Infraestructura Institucional de Datos del Instituto Humboldt (I2D) procedió a realizar la debida estructuración de los conjuntos de datos adoptando el estándar Darwin Core (DwC) con algunas adaptaciones institucionales que no afectan la naturaleza del estándar, para lo cual, se realizó un mapeo de los elementos utilizados en el conjunto de datos y posteriormente se realizó la validación de la información en cuanto a la estructura, donde se eliminaron casos de duplicidad, se corrigieron errores ortográficos y se documentó la taxonomía de las especies teniendo en cuenta el Catalogo de la vida 2014 (http://www.catalogueoflife.org) y el estado taxonómico teniendo en cuenta http://tnrs.iplantcollaborative.org/

Datos de la colección

Nombre de la Colección Herbario de la Universidad del Valle
Identificador de la Colección CUVC
Identificador de la Colección Parental N/A

Referencias bibliográficas

  1. Agarwal, S. K. 2008. Fundamentals of ecology. Chapter 3, Radiation. APH Publishing. New Delhi, India, 460 pp.
  2. Aguilera, M. O. y W. K. Lauenroth. 1995. Influence of gap disturbance and type of microsites on seedling establishment in Bouteloua gracilis. Journal of Ecology 83 (1): 87-97.
  3. Araujo-Murakami, A., L. Arroyo-Padilla, T. J. Killeen y M. Saldias-Paz. 2006. Dinámica del bosque, incorporación y almacenamiento de biomasa y carbono en el Parque Nacional Noel Kempff Mercado. Ecología en Bolivia 41 (1): 24-45.
  4. Armbrecht, I. y P. Ulloa-Chacón. 1999. Rareza y diversidad de hormigas en fragmentos de bosque seco colombianos y sus matrices. Biotropica 31 (4): 646-653.
  5. Barton, A. M., N. Fetcher y S. Redhead. 1989. The relationship between treefall gap size and light flux in a neotropical rain forest in Costa Rica. Journal of Tropical Ecology 5 (4): 437-439.
  6. Brokaw, N.V. L. 1985. Gap-phase regeneration in a tropical forest. Ecology 66 (3): 682-687.
  7. Bullock, J. M. 2000. Gaps and seedling colonization. Pp: 375-395. En: Seeds: the ecology of regeneration in plant communities Capítulo 16. Fenner, M. (Eds). CABI Publishing. Nueva York.
  8. Bunyavejchewin, S. 1999. Structure and dynamics in seasonal dry evergreen forest in northeastern Thailand. Journal of Vegetation Science 10 (6): 787-792.
  9. Bush, J. K., F. A. Richter y O. W. Van Auken. 2006. Two decades of vegetation change on terraces of a south Texas river. Journal of the Torrey Botanical Society 133 (2): 280-288.
  10. Bush, J.K. y O. W. Van Auken. 1986. Light requirements of Acacia smallii and Celtis laevigata in relation to secondary succession on floodplains of south Texas. American Midland Naturalist 115 (1): 118-122.
  11. Carim, S., G. Schwartz y M- F. F. Silva. 2007. Riqueza de espécies, estructura e composição florística de uma floresta secundária de 40 años no leste da Amazônia. Acta Botanica Brasilica 21 (2): 293-308.
  12. Caritat, A., M. Oliva y M. Molinas. 1992. Distribución de la biomasa en dos parcelas de Alcornocal. Scientia Gerundensis 18: 131-142.
  13. Carvalho, F.C.d., J. A. d. A. Filho, R. García, J. M. P. Filho y V. M. d. Albuquerque. 2001. Efeito de corte da parte aérea na sobrevivência do marmeleiro (Croton sonderianus Muell.Arg.). Revista Brasileira de Zootecnia 30 (3): 930-934.
  14. Condit, R., P.S. Ashton, N. Manokaran, J. V. LaFrankie, S. P. Hubbell y R. B. Foster. 1999. Dynamics of the forest communities at Pasoh and Barro Colorado: comparing two 50-ha plots. Philosophical Transactions of the Royal Society B: Biological Sciences 354: 1739-1748.
  15. Condit, R., S. P. Hubbell y R. B. Foster. 1995. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65 (4): 419-439.
  16. CVC. 1990. Comparación de cobertura de bosques y humedales entre 1957 y 1986 con delimitación de las comunidades naturales críticas en el valle geográfico del río Cauca. Informe No. 90-7. Corporación Autónoma Regional del Valle del Cauca (CVC). Cali, Colombia, 84 pp.
  17. Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, N. Higuchi, T. Kira, J. P. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Riéra y T. Yamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99.
  18. Chave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson y A. E. Zanne. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351- 366.
  19. Dalling, J. W., S. P. Hubbell y K. Silvera. 1998. Seed dispersal seedling establishment and gap partitioning among tropical pioneer trees. Journal of Ecology 86 (4): 674-689.
  20. Denslow, J. S. 1980. Gap partitioning among tropical rainforest trees. Biotropica 12 (2): 47-55.
  21. Díaz-Martín, R. M. 2005. Sinopsis de las especies colombianas de Pithecellobium (Leguminosae: Mimosoideae: Ingeae). Pp: 281-300. En: Estudios en leguminosas colombianas. Forero, E. y C. Romero (Eds). Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colección Jorge Álvarez Lleras, No. 25. Bogotá, D.C., Colombia.
  22. Díaz, J. M. 2006. Bosque seco tropical, Colombia. Banco de Occidente, I/M Editores. Cali, Colombia, 204 pp.
  23. Espinal, L. S. y E. Montenegro. 1963. Formaciones vegetales de Colombia. Memoria explicativa sobre el mapa ecológico. Instituto geográfico Agustín Codazzi (IGAC). Bogotá D.C., Colombia, 201 pp.
  24. Esquivel, M.J., C. A. Harvey, B. Finegan, F. Casanoves, C. Skarpe y A. Nieuwenhuyse. 2009. Regeneración natural de árboles y arbustos en potreros activos de Nicaragua. Agroforestería en las Americas 47: 76-84.
  25. Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics 34: 487-515.
  26. Fenner, M. y K. Thompson. 2005. The ecology of seeds. Cambridge University Press. Cambridge, Reino Unido, 250 pp.
  27. Finegan, B. 1996. Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Tree 11 (3): 119-124.
  28. Fredericksen, T.S. y B. Mostacedo. 2000. Regeneration of timber species following selective logging in a Bolivian tropical dry forest. Forest Ecology and Management 131: 47-55.
  29. Gentry, A. H. 1995. Diversity and floristic composition of neotropical dry forest. Pp: 146-194. En: Seasonally dry tropical forest. Bullock, S.H., H.A. Mooney y E. Medina (eds). Cambridge University Press, Cambridge, Reino Unido.
  30. Gillespie, T. W., A. Grijalva, y C. N. Farris. 2000. Diversity, composition and structure of tropical dry forest in Central America. Plant Ecology 147 (1): 37-47.
  31. González, S. d. M. y W. Devia. 1995. Caracterización fisionómica de la flora de un bosque seco secundario en el corregimiento de Mateguadua, Tuluá-Valle. Cespedesia 20: 35-65.
  32. Grubb, P.J. y T. C. Whitmore. 1966. A comparison of montane and lowland rain forest in Ecuador: II. The Climate and its effects on the distribution and physiology of the forests. Journal of Ecology 54 (2): 303-333.
  33. Hammond, D.S. y V. K. Brown. 1995. Seed size of woody plants in relation to disturbance, dispersal, soil type in wet neotropical forests. Ecology 76 (8): 2544-2561.
  34. Harper, J. L. 1977. Population biology of plants. Academic Press Inc. Nueva York. 892 p.
  35. Hoekstra, J. M., T. M. Boucher, T. H. Ricketts y C. Roberts. 2005. Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters 8: 23-29.
  36. Holdridge, L. R. 1967. Life zone ecology, 2nd ed. Tropical Science Center. San José, Costa Rica, 206 pp.
  37. IAvH. 1998. El bosque seco tropical (Bs-T). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Programa de Inventario de la Biodiversidad. Grupo de Exploraciones y Monitoreo Ambiental GEMA. Bogotá, D.C., Colombia, 24 pp.
  38. Janzen, D. H. 1988a. Management of habitat fragments in a tropical dry forest: growth. Annals of the Missouri Botanical Garden 75 (1): 105-116.
  39. Janzen, D. H. 1988b. Tropical dry forests: the most endangered major tropical ecosystem. Pp: 130-137. En: Biodiversity, part 3, Chapter 14. Wilson, E. O. y F. M. Peter. (Eds). National Academy Press. Washington, D.C.
  40. Jenkins, J., R. Birdsey y Y. Pan. 2001. Biomass and NPP estimation for the mid-Atlantic region (USA) using plotlevel forest inventory data. Ecological Applications 11 (4): 1174-1193.
  41. Kennard, D. K. 2002. Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. Journal of Tropical Ecology 18 (1): 53-66.
  42. Lagemann, J. y J. Heuveldop. 1983. Characterization and evaluation of agroforestry systems: the case of Acosta- Puriscal, Costa Rica. Agroforestry Systems 1: 101-115.
  43. Lawson, G.W., K. O. Armstrong-Mensah, y J. B. Hall. 1970. A catena in tropical moist semi-deciduous forest near Kade, Ghana. Journal of Ecology 58 (2): 371-398.
  44. Leal, I. R., R. Wirth y M. Tabarelli. 2007. Seed dispersal by ants in the semi-arid caatinga of north-east Brazil. Annals of Botany 99: 885-894.
  45. Leaño, C. y P. Saravia. 1998. Monitoreo de parcelas permanentes de medición en el bosque Chimanes. Documento técnico 67. Santa Cruz, Bolivia, 21 pp.
  46. Lôbo, D., M. Tabarelli e I. Leal. 2011. Relocation of Croton sonderianus (Euphorbiaceae) seeds by Pheidole fallax Mayr (Formicidae): a case of post-dispersal seed protection by ants? Neotropical Entomology 40 (4): 440-444.
  47. Martínez-Garza, C. y H. F. Howe. 2010. Características foliares y tasas vitales de árboles sucesionales tardíos de un bosque tropical perennifolio. Boletín de la Sociedad Botánica de México 86: 1-10.
  48. Marulanda, L.O., A. Uribe, P. Velásquez, M. A. Montoya, A. Idárraga, M. C. López y J. M. López. 2003. Estructura y composición de la vegetación de un fragmento de bosque seco en San Sebastián, Magdalena (Colombia). I. Composición de plantas vasculares. Actualidades Biológicas 25 (78): 17-30.
  49. Mendoza, H. 1999. Estructura y riqueza florística del bosque seco tropical en la región Caribe y el valle del río Magdalena, Colombia. Caldasia 21 (1): 70-94.
  50. Murillo, J. 1999. Composición y distribución del género Croton (Euphorbiaceae) en Colombia, con cuatro especies nuevas. Caldasia 21 (2): 141-166.
  51. Murphy, P. G. y A. E. Lugo. 1986a. Ecology of tropical dry forest. Annual Review of Ecology and Systematics 17: 67-88.
  52. Murphy, P.G. y A. E. Lugo. 1986b. Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 18 (2): 89-96.
  53. Naumburg, E., L. E. De Wald y T. E. Kolb. 2001. Shade responses of five grasses native to southwesterm U.S. Pinus ponderosa forests. Canadian Journal of Botany 79: 1001-1009.
  54. Nebel, G., L. P. Kvist, J. K. Vanclay y H. Vidaurre. 2001. Forest dynamics in flood plain forests in the Peruvian Amazon: effects of disturbance and implications for management. Forest Ecology and Management 150: 79-92.
  55. Parra, G. 1994. Polinización de especies útiles de la estación biológica «El Vínculo» (Buga-Valle). Cespedesia 20 (64-65): 47-86.
  56. Pearson, T. R. H., D. F. R. P. Burslem, R. E. Goeriz y J. W. Dalling. 2003. Regeneration niche partitioning in neotropical pioneers: effects of gap size, seasonal drought and herbivory on growth and survival. Oecologia 137 (3): 456-465.
  57. Pereira, I. M., L. A. d. Andrade, J. R. M. Costa y J. M. Dias. 2001. Regeneração natural em um remanescente de caatinga sob diferentes níveis de perturbação, no agreste paraibano. Acta Botanica Brasilica 15 (3): 413-426.
  58. Phillips, O. L., P. Hall, A. H. Gentry, S. A. Sawyer y R. Vásquez. 1994. Dynamics and species richness of tropical rain forests. Proceeding of the National Academy of Science of the United Stated of America 91: 2805-2809.
  59. Pinard, M. A., F. E. Putz D. Rumíz R. Guzmán y A. Jardim. 1999. Ecological characterization of tree species for guiding forest management decisions in seasonally dry forests in Lomerío, Bolivia. Forest Ecology and Management 113: 201-213.
  60. Portillo-Quintero, C.A. y G. A. Sánchez-Azofeifa. 2010. Extent and conservation of tropical dry forests in the Americas. Biological Conservation 143: 144-155.
  61. Ramírez, H., M. Acevedo, M. Ataroff y A. Torres. 2009. Crecimiento diamétrico de especies arbóreas en un bosque estacional de los llanos occidentales de Venezuela. Ecotrópicos 22 (2): 46-63.
  62. Rangel-Ch., J. O. y A. Velázquez. 1997. Métodos de estudio de la vegetación. Pp: 59-87. En: Colombia, Diversidad biótica II: tipos de vegetación en Colombia. Rangel-Ch., J.O., P. D. Lowyn y M. Aguilar. (Eds). Instituto de Ciencias Naturales - Universidad Nacional de Colombia, Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM, Ministerio del Medio Ambiente. Bogotá, D.C., Colombia.
  63. Riegel, G.M., R. F. Miller y W. Krueger. 1995. The effects of aboveground and belowground competition on understory species composition in a Pinus ponderosa forest. Forest Science 41 (4): 864-889.
  64. Rojas, O. 1984. Evolución de una sucesión vegetal en el Valle del Cauca: I. Generalidades sobre el estudio de la dinámica de regeneración en el Santuario de El Vínculo. Cespedesia 13 (49-50): 152-221.
  65. Rojas, O. 1991. Generalidades sobre el estudio de la dinámica de regeneración en el santuario de El Vínculo. Cespedesia 18 (60): 39-43.
  66. Romagnolo, M. B. y M. C. Souza. 2006. O gênero Eugenia L. (Myrtaceae) na planície de alagável do Alto Río Paraná, Estados de Mato Grosso do Sul e Paraná, Brasil. Acta Botanica Brasilica 20 (3): 529-548.
  67. Salazar, M. I., N. Gómez, W. G. Vargas, M. Reyes, L. S. Castillo y W. Bolívar. 2002. Bosques secos y muy secos del departamento del Valle del Cauca. Corporación Autónoma Regional del Valle del Cauca (CVC). Cali, Colombia, 72 pp.
  68. Sharma, P. D. 2009. Ecology and environment. Chapter 2, Climatic and topographic factors. 10a edición. Rastogi Publications. Nueva Delhi, India, 640 pp.
  69. Sierra, C.A., J. I. del Valle y S. A. Orrego. 2001. Ecuaciones de biomasa de raíces y sus tasas de acumulación en bosques sucesionales y maduros tropicales de Colombia. Simposio internacional medición y monitoreo de la captura de carbono en ecosistemas forestales, 18 al 20 de octubre. Valdivia, Chile, 16 pp.
  70. Souza, A., A. C. C. F. F. De Paula y R. C. L. Figueiredo- Ribeiro. 2004. Effects of irradiance on non-structural carbohydrates, growth and hypoglycemic activity of Rhynchelytrum repens (Willd.) C. E. Hubb (Poaceae). Brazilian Journal of Biology 64 (3B): 697-706.
  71. Souza, R. P. d. e I. F. M. Válio. 2001. Seed size, seed germination and seedling survival of Brazilian tropical tree species differing in successional status. Biotropica 33 (3): 447-457.
  72. Stegen, J.C., N. G. Swenson, R. Valencia, B. J. Enquist y J. Thompson. 2009. Above-ground forest biomass is not consistently related to wood density in tropical forests. Global ecology and biogeography 18: 617-625.
  73. Swaine, M. D. y D. Lieberman. 1987. Note on the calculation of mortality rates. Journal of Tropical Ecology 3 (4): i-iii.
  74. Swaine, M. D., D. Lieberman y J. B. Hall. 1990. Structure and dynamics of a tropical dry forest in Ghana. Vegetatio 88: 31-51.
  75. Swaine, M. D., D. Lieberman y F. E. Putz. 1987. The dynamics of tree populations in tropical forest: a review. Journal of Tropical Ecology 3 (4): 359-366.
  76. Uslar, Y. V., B. Mostacedo y M. Saldías. 2004. Composición, estructura y dinámica de un bosque seco semideciduo en Santa Cruz, Bolivia. Ecología en Bolivia 39 (1): 25-43.
  77. Vallejo, M. I., A. C. Londoño, R. López, G. Galeano, E. Álvarez y W. Devia. 2005. Establecimiento de parcelas permanentes en bosques de Colombia, volumen I. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia, 310 pp.
  78. Van Auken, O.W.y J. K. Bush. 1985. Secondary succession on terraces of the San Antonio River. Bulletin of the Torrey Botanical Club 112 (2): 158-166.
  79. Wilcove, D. S., C. H. McLellan y A. P. Dobson. 1986. Habitat fragmentation in the temperate zone. Pp: 237- 256. En: Conservation biology: science of scarcity and diversity. Soulé, M.E. (eds). Sinauer Associates. Sunderland, Massachusetts, EE.UU.
  80. Wishnie, M. H., D. H. Dent, E. Mariscal, J. Deago, N. Cedeño, D. Ibarra, R. Condit y P. M. S. Ashton. 2007. Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. Forest Ecology and Management 243: 39-49.
  81. Zanne, A. E., G. López-González, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson, M. C. Wiemann y J. Chave. 2009. Global wood density database. Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. doi:10.5061/dryad.234.

Metadatos adicionales

Asociado a este recurso existe un articulo científico publicado en la Revista Biota Colombiana, volumen 13, número 2, páginas 66-85.

Propósito El objetivo principal de este trabajo fue conocer la dinámica de la vegetación a través del cambio en la estructura y composición de la misma, las tasas de mortalidad y reclutamiento, así como el almacenamiento de biomasa de la vegetación en la parcela permanente del PNR El Vínculo, Valle del Cauca, en los años 2009 y 2011.
Identificadores alternativos doi:10.15472/gvdjfj
49462b79-dac9-455f-9d7a-d5d6d9d4fd51
http://ipt.biodiversidad.co/iavh/resource?r=biota_v13_n2_03